

Schottky Barrier Diode Ceramic Surface Mount

Qualified per MIL-PRF-19500/444

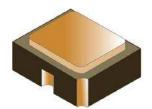
DESCRIPTION

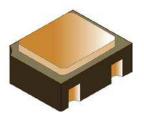
This 1N5711UB and 1N5712UB Schottky barrier diode is ceramic encased and offers military grade qualifications for high-reliability applications. Unidirectional as well as doubler, common anode and common cathode polarities are available.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 1N5711, 1N5712 numbers.
- JAN, JANTX, JANTXV and commercial qualifications also available per MIL-PRF-19500/444 on "1N" numbers only.


(See Part Nomenclature for all available options).


RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low reverse leakage characteristics.
- Low-profile ceramic surface mount package (see package illustration).
- ESD sensitive to Class 1.

Qualified Levels: JAN, JANTX, JANTXV and JANS

UB Package

Also available in:

📆 DO-35 package (axial-leaded) 1N5711-1, 1N5712-1,

芃 DO-213AA package (surface mount) 1N5711UR-1, 1N5712UR-1, 1N6857UR-1, and 1N6858UR-1

MAXIMUM RATINGS @ 25 °C unless otherwise stated

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		T_J and T_{STG}	-65 to +150	°C
Thermal Resistance, Junction-to-Solder Pa	R _{OJSP}	100	°C/W	
Average Rectified Output Current:				
	1N5711UB ⁽¹⁾	Io	33	mA
	1N5712UB ⁽²⁾		75	
Solder Temperature @ 10 s			260	°C

NOTES: 1. At T_{EC} and T_{SP} = +140 °C, derate I_{O} to 0 at +150 °C.

2. At T_{EC} and T_{SP} = +130 °C, derate I_O to 0 at +150 °C.

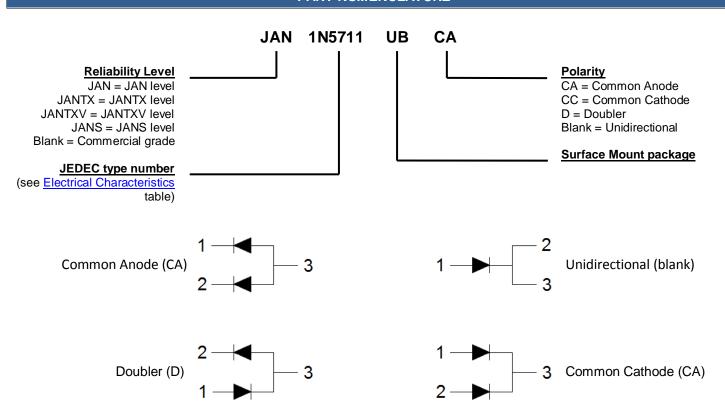
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Approximately 0.04 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS						
Symbol	Definition						
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.						
f	frequency						
I_R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R .						
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.						
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.						
$V_{(BR)}$	Breakdown Voltage: A voltage in the breakdown region.						
V _F	Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.						
V _R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.						
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.						

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

TYPE NUMBER	MINIMUM MAXIMUM BREAKDOWN FORWARD VOLTAGE VOLTAGE		MAXIMUM FORWARD VOLTAGE	WORKING PEAK REVERSE VOLTAGE	MAXIMUM REVERSE LEAKAGE CURRENT		MAXIMUM CAPACITANCE @ V _R = 0 VOLTS f = 1.0 MHz	
	V _(BR) @ 10 μA	V _F @ 1 mA	V _F @ I _F	V _{RWM}	$I_R @ V_R$		Ст	
	Volts	Volts	V @ mA	V (pk)	nA	Volts	pF	
1N5711UB	70	0.41	1.0 @ 15	50	200	50	2.0	
1N5712UB	20	0.41	1.0 @ 35	16	150	16	2.0	

NOTE:

1. Effective minority carrier lifetime (τ) is 100 pico seconds.

GRAPHS

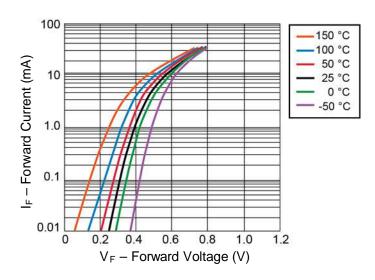


FIGURE 1

I-V Curve showing typical Forward Voltage Variation
Temperature for the 1N5712 Schottky Diodes

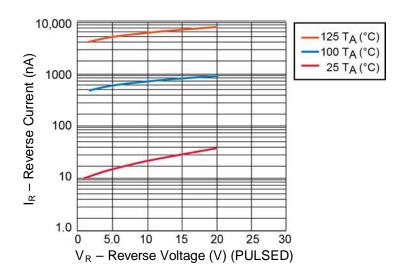


FIGURE 2

1N5712 Typical variation of Reverse

Current (I_R) vs Reverse Voltage (V_R) at Various Temperatures

GRAPHS

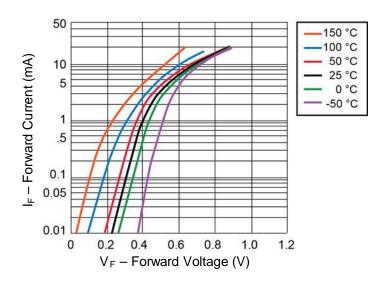


FIGURE 3

I – V curve showing typical Forward Voltage Variation
With Temperature Schottky Diode 1N5711

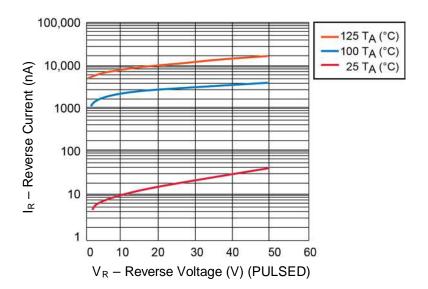


FIGURE 4

1N5711 Typical Variation of Reverse Current (I_R) vs Reverse Voltage (V_R)

at Various Temperatures

GRAPHS

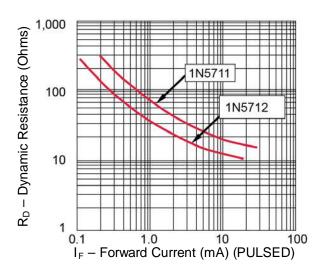
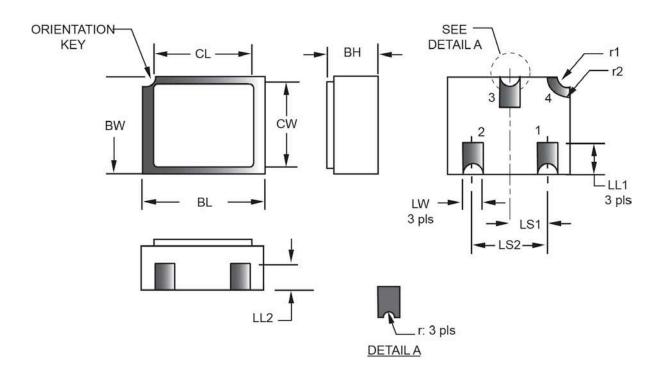



FIGURE 5

Typical Dynamic Resistance (R_D) vs Forward Current (I_F)

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	inch mi		millin	millimeters		Note Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
ВН	0.046	0.056	1.17	1.42		LS1	.035	.039	0.89	0.99	
BL	0.115	0.128	2.92	3.25		LS2	.071	.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	.008	-	0.20	
CW	-	0.108	-	2.74		r1	-	.012	-	0.31	
LL1	0.022	0.038	0.56	0.97		r2	-	.022	-	.056	
LL2	0.017	0.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Ceramic package only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.